
Review: Async Professional
by Dave Jewell

Those of us who moved over to
Delphi from Borland Pascal

will be familiar with TurboPower.
The company is strongly commit-
ted to the Pascal language and has
a history of producing high quality
add-in components for the Pascal
developer. They were among the
first to release components for
Delphi 1, in the shape of the
Orpheus toolkit. Other Delphi
products include SysTools and
Memory Sleuth.

TurboPower’s Async Professio-
nal For Delphi is described as being
a serial communications toolkit for
16-bit and 32-bit Delphi. I reviewed
version 2.01, but there is now
another version with some minor
bug fixes and updates. Like all of
TurboPower’s products, it’s roy-
alty free and full source code is
included at no extra cost, which is
a major bonus to those of us who
like to ‘fiddle’! The inclusion of
source code also makes it very
attractive if you plan to use the
toolkit to develop commercial ap-
plications, since you need have no
worries about the longevity of your
component supplier.

What You Get
Installing the full product (we’ll
follow TurboPower’s lead and call
it APD for short) adds no less than
three new pages to your Compo-
nent Palette. One of these pages is
populated by the base APD compo-
nents, another contains fax spe-
cific components and the third
contains components for commu-
nicating with the modem via TAPI
(Telephony Application Program-
ming Interface). More on all this
later. The package also includes
over 40 example programs, which
demonstrate different aspects of
the toolkit. Naturally, the source to
all these example programs is in-
cluded too. You also get on-line
help which can be integrated into
the 16-bit or 32-bit Delphi environ-
ment using Borland’s help file in-
staller in the usual way. Finally, you

get a set of ‘bonus’ components
containing a number of somewhat
larger demos, and a nice thick 720
page manual.

One of the selling points of
TurboPower’s Delphi components
is that they are all 100% native code
VCL controls. You don’t have
to worry about separate DLLs,
ActiveX controls, or anything like
that. All the APD components can
be integrated into your EXE file, but
it’s also possible to build DLLs if
you want to do that: the choice is
yours. TurboPower’s program-
ming style relies heavily on condi-
tional compiler directives: all the
interface routines of the core units
have a conditional export clause
which is compiled in when building
a DLL. I imagine that with Delphi 3
on the horizon, it would also be
possible to create packages for the
various components, though this is
something that I didn’t investigate.

Speaking as someone who’s
been involved in the development
of comms programs in the past, I
can tell you that it’s a heck of a lot
of hard work to implement some-
thing like the Zmodem file transfer
protocol.

I’ve seen a number of different
C-based implementations of the
Zmodem protocol, most of which
looked like a ball of spaghetti with
goto statements being used like
they’re going out of fashion!
TurboPower’s Zmodem implemen-
tation has been written from the
ground up and is a lot prettier than
the equivalent C code, though
there are still a few goto statements
here and there! In addition to
Zmodem, the package also sup-
ports Ymodem and Xmodem for
those with masochistic tenden-
cies. The Kermit, ASCII and CIS B+
protocols are included too.

APD Architecture
This is a complex package and it
will take you some time to feel com-
fortable with it. One of the sample
programs, TCOM, is a big help in
this respect because it represents
a full-featured terminal emulation
program with support for TAPI,
Zmodem downloads and so forth.
Straight out of the box, I was able
to use it to log on to CIX (but see
Conclusions). TCOM shows how all
the individual bits of the APD
jigsaw fit together to provide a
complete solution for comms
development.

So how do things fit together?
TurboPower have done their best
to modularise the functionality of
the library into a number of differ-
ent components which you ‘glue’
together in the same way as when
you are using data-aware compo-
nents. For example, to create a sim-
ple terminal window, you perform
the following steps. Firstly, place a
TApdComPort component on the
form. This component encapsu-
lates the low-level functionality of
a serial port. Next, place an TApdE-
mulator component on the form.
Like TApdComPort, this is a non-
visual component. Thirdly, place a
TApdTerminal component on the
form: this implements a line ori-
ented terminal window with op-
tional rollback. The job of the
TApdEmulator component is to pro-
vide terminal emulation. It works in
tandem with the terminal window:
every character received by the
terminal is passed to the emulation
component which then parses it
and sends commands back to the
terminal display, telling it what ac-
tion to perform. ANSI, VT100 and
VT52 emulations are all supported.
At this point, you can simply build
the application, type in a phone

➤ What a lot of new components! It looks a bit overwhelming at first,
but the controls are well thought out and fit together logically

April 1997 The Delphi Magazine 43

number using a standard Hayes
ATDT command and log on to your
favourite BBS!

Suppose you want to add some
cute status lights to your terminal,
just like the ones that you see on an
external modem. To do this, you
place a set of TApdStatusLight com-
ponents on your form (as many as
you want to use) along with a
TApdSLController component. This
is a status light controller: you use
it to link the various status lights to
specific events such as Break, CTS,
DCD and so forth. Assuming you’ve
only got one com port component
on your form, the status light com-
ponent will automatically default
to using this com port and all you
need to do is set the controller’s
Monitoring property to True in your
FormCreate routine. Each status
light defaults to green for off and
red for on, but you can change
these colours or even display
custom bitmaps instead.

From the above, you should be
getting the idea that APD is a versa-
tile package. But using APD for
your comms projects can make life
easier not only for you, the devel-
oper, but for your end users as
well. For instance, many comm pro-
grams are marred by making the
user type long strings of hiero-
glyphic modem initialisation
strings into a dialog box when set-
ting up the program for the first
time. APD avoid this sort of non-
sense by providing a component

which manages a database of mo-
dem characteristics. This data-
base, as supplied by TurboPower,
includes data for a wide variety of
modems, but you can easily add
other modems and revise what’s
already there. Rather than making
this into a full-blown database,
which would have bloated the size
of programs that use APD,
TurboPower placed the modem da-
tabase into an INI file which you
ship to end users along with your
product. Of course, if you go for a
full-blown TAPI approach, then
your application probably doesn’t
even need to worry about what
sort of modem it’s talking to.

Creating a simple fax sending ap-
plication is also very straightfor-
ward, and uses the same modular
approach. A fax converter compo-
nent converts an input file into the
APF format that’s used for fax
transmission. The converter works
with text files, TIFF files, Windows
bitmaps and PCX/DCX files. Con-
version can be done prior to fax
transmission, or as part of the
process: the main thing is that it’s
transparent to the end user. APD
also comes with a Windows printer
driver that can be used to create
APF files directly from inside your
own applications. Once you’ve got
an APF file, you can then use a
TApdSendFax component to transmit
the actual fax. Another component
implements a fancy status window
to show the progress of the fax

transmission while still other com-
ponents provide facilities for re-
ceiving, viewing and printing faxes.

APD is based around a flexible,
event-driven system which uses
the idea of triggers. You can trigger
on a modem status change, on a
timer, or on received data. As sup-
plied, APD allows you to set ten
timer triggers, ten status triggers
and twenty data triggers. You
could probably increase these
values and rebuild the library, al-
though with some slight loss of per-
formance. Data triggers are
probably most useful and allow a
trigger event to be generated when
a certain sequence of bytes are re-
ceived. For instance, the following
statement establishes a trigger for
the string Login:; the second pa-
rameter turns off case-sensitive
matching:

LoginTrigger :=
 ApdComPort.AddDataTrigger(
 ’Login:’, False);

When the specified string is de-
tected, an OnTriggerData event is
automatically raised. You set up an
OnTriggerData handler using the
Events page of the Object Inspector
in the normal way. When the On-
TriggerData method is invoked,
one of the parameters contains a
trigger handle which corresponds
to the handle returned from the
call to AddDataTrigger. In this way,
you can set up a complex state

➤ APD includes comprehensive context-sensitive
on-line help integrated into Delphi

➤ This is TCOM, one of the many sample apps
included with APD

44 The Delphi Magazine Issue 20

machine which walks thorough a
series of interactions with a remote
host. Running out of triggers isn’t a
problem because you can remove
existing triggers within an event
handler, effectively making room
for new states within your state
machine.

APD is designed to take full ad-
vantage of the multi-threading ca-
pabilities built into the Win32 API.
The built-in dispatcher, which is
responsible for triggering events
and driving the various file transfer
protocols, uses multiple threads to
optimise performance and reduce
foreground latency. Under 16-bit
Windows, timers and comm notifi-
cation events are used to maximise
throughput.

Conclusions
APD is probably the most complex
Delphi add-on produced by
TurboPower and there’s a lot of
material to get to grips with. My
one major criticism of the product
is the lack of tutorial material in the
printed documentation. The man-
ual gives an excellent introduction

to serial comms, but is mostly
reference material for the APD li-
brary. As a reviewer, I was in the
privileged position of getting a
Reviewer’s Guide which helped
enormously because it did contain
tutorial exercises – but maybe
some reviewers need more help
than others!

One word of warning: for some
strange reason the TApdComPort
component defaults to using COM
port 2, so if your modem is on a
different port, be sure to change
this in each of the sample pro-
grams, or none of them will work.

Also one minor whinge: the DOS
version of Async Professional (for
Borland Pascal) includes a number
of units which allow you to work
directly with ZIP and LZH files.
These are actually very good [they
are what drive the XALL.EXE archive
extractor program found on each
month’s companion disk. Editor]
and can fairly easily be converted
for Windows use [check out
TurboPower’s ftp site where there’s
a file telling you how. Editor]. It’s a
real shame that TurboPower didn’t

revamp them for Delphi and 32-bit
and include them in the Delphi APD
package.

However, none of the above
should detract from my view that
APD itself is a superb, robust foun-
dation for creating comms soft-
ware. It already enjoys a deserved
reputation as arguably the best
comms library around. APD costs
£135 or less, plus VAT, in the UK,
and is available from all major
software tools retailers. When you
consider the effort needed to ‘roll
your own’ (see John Chaytor’s arti-
cle on 16-bit serial comms in the
March issue), it’s a remarkable
bargain.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is the author of Instant Delphi
Programming published by Wrox
Press. You can contact Dave
as DaveJewell@msn.com, DSJew-
ell@aol.com or 102354,1572 on
CompuServe.

April 1997 The Delphi Magazine 45

	What You Get
	APD Architecture
	Conclusions

